Neural Network Definition of Highly Predictable Protein Secondary Structure Classes

نویسندگان

  • Alan S. Lapedes
  • Evan W. Steeg
  • Robert M. Farber
چکیده

We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computational molecular biology. Neural networks have been a popular method to attempt to predict these conventional secondary structure classes. Accuracy has been disappointingly low. The algorithm presented here uses neural networks to similtaneously examine both sequence and structure data, and to evolve new classes of secondary structure that can be predicted from sequence with significantly higher accuracy than the conventional classes. These new classes have both similarities to, and differences with the conventional alpha helix, beta strand and coil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network Definitions of Highly Predictable Protein Secondary Structure Classes

We use two co-evolving neural networks to determine new classes of protein secondary structure which are significantly more predictable from local amino sequence than the conventional secondary structure classification. Accurate prediction of the conventional secondary structure classes: alpha helix, beta strand, and coil, from primary sequence has long been an important problem in computationa...

متن کامل

An Artificial Neural Network Classifier for the Prediction of Protein Structural Classes

As there are quite a few difficulties for us to predict a protein structural class directly from its primary sequence, the protein structural prediction based on the predicted secondary structure will undoubtedly be the first choice we would like to take. Protein structural classes are generally defined as four classes: α, β, α/β, α +β. The protein secondary structure describes the local struct...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Application of Artificial Neural Network in Study Phenomenon of Landslide and Risk Modeling using Geographic Information System (GIS), Case Study: Alamoot Rood Watershed

     One of the natural disasters that occurs in abundance in Iran, due to the geological structure, morphological and seismic conditions, and damages the lives and property of people is a landslide. Roodbar Alamoot watershed in the east of Qazvin province is a mountainous region with a high potential for occurrence of landslides. Because of their active status, there is also a growing trend of...

متن کامل

Cascaded multiple classifiers for secondary structure prediction.

We describe a new classifier for protein secondary structure prediction that is formed by cascading together different types of classifiers using neural networks and linear discrimination. The new classifier achieves an accuracy of 76.7% (assessed by a rigorous full Jack-knife procedure) on a new nonredundant dataset of 496 nonhomologous sequences (obtained from G.J. Barton and J.A. Cuff). This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993